

ATS Pressure Transducer Chart 20" H₂O

Transducer	Typical Voltage Offset	Conversion Multiplier
20" H ₂ O (Tail Pipe Sensor)	2.25 V	pos values ($H_2O \times 0.1$) + 2.25 = voltage neg values 2.25 - ($H_2O \times 0.1$) = voltage

The 20" H₂O Pressure Transducer will convert physical pressure to a voltage reading. This voltage reading will need to be converted from voltage to pressure. The following chart converts the voltage readings into the actual pressure value.

Voltage must be set to 2.25 V for reading to be valid.

4.25 = 20" H ₂ O	2.85 = 6" H ₂ O	$1.45 = -8$ " H_2O
$4.15 = 19" H_{2}^{1}O$	$2.75 = 5" H_2^{2}O$	$1.35 = -9" \text{ H}_{2}^{2}\text{O}$
$4.05 = 18" H_{2}O$	$2.65 = 4" H_2^{2}O$	$1.25 = -10^{\circ} \text{ H}_{2}^{\circ} \text{O}$
$3.95 = 17" H_2^{-}O$	$2.55 = 3" H_2^{2}O$	$1.15 = -11" H_{2}^{-}O$
$3.85 = 16" H_2O$	$2.45 = 2" H_{2}O$	$1.05 = -12" \text{ H}_{2}^{-}\text{O}$
$3.75 = 15" H_{2}^{-}O$	$2.35 = 1" H_2^{2}O$	$0.95 = -13" H_2^{-}O$
$3.65 = 14" H_2O$	$2.25 = 0" H_2^{-}O$	$0.85 = -14" \text{ H}_{2}^{-}\text{O}$
$3.55 = 13" H_2O$	$2.15 = -1" H_{2}^{-}O$	$0.75 = -15" \text{ H}_{2}^{-}\text{O}$
$3.45 = 12" H_2^{-}O$	$2.05 = -2" H_2^{-}O$	$0.65 = -16" \text{ H}_{2}^{-}\text{O}$
$3.35 = 11" H_2O$	1.95 = -3" H ₂ O	$0.55 = -17" \text{ H}_{2}^{-}\text{O}$
$3.25 = 10^{\circ} H_{2}^{-}O$	$1.85 = -4" H_{2}^{-}O$	$0.45 = -18" \text{ H}_{2}^{-}\text{O}$
$3.15 = 9" H_2^{-}O$	$1.75 = -5" H_2^{0}$	$0.35 = -19" H_2^{-}O$
$3.05 = 8" H_{2}^{-}O$	$1.65 = -6" H_2^{-}O$	$0.25 = -20" \text{ H}_{2}^{-}\text{O}$
$2.95 = 7" H_{2}O$	1.55 = -7" H ₂ O	_

WARNING! This sensor's maximum limit is 20" H₂O. This limit should not be exceeded. Damage to the sensor will result. BODILY INJURY or DEATH could also result.

www.AutomotiveTestSolutions.com > 1.800.572.6112

ATS Pressure Transducer Chart 20" H₂O

Transducer	Typical Voltage Offset	Conversion Multiplier
20" H ₂ O (Tail Pipe Sensor)	2.25 V	pos values ($H_2O \times 0.1$) + 2.25 = voltage neg values 2.25 - ($H_2O \times 0.1$) = voltage

The 20" H₂O Pressure Transducer will convert physical pressure to a voltage reading. This voltage reading will need to be converted from voltage to pressure. The following chart converts the voltage readings into the actual pressure value.

Voltage must be set to 2.25 V for reading to be valid.

2.85 = 6" H ₂ O	1.45 = -8" H ₂ O
$2.75 = 5" H_2^{2}O$	$1.35 = -9$ " $H_2^{5}O$
$2.65 = 4" H_2^{2}O$	$1.25 = -10" H_2^{2}O$
$2.55 = 3" H_2^{-}O$	$1.15 = -11" H_2^{-1}O$
$2.45 = 2" H_2^{-}O$	$1.05 = -12" H_2^{-1}O$
$2.35 = 1" H_2^{-}O$	$0.95 = -13" \text{ H}_{2}^{2}\text{O}$
$2.25 = 0" H_2^{-}O$	$0.85 = -14" \text{ H}_{2}^{-}\text{O}$
$2.15 = -1$ " $H_{2}^{-}O$	$0.75 = -15" H_2^{-}O$
$2.05 = -2" H_2^{-}O$	$0.65 = -16" \text{ H}_{2}^{-}\text{O}$
1.95 = -3" H ₂ O	$0.55 = -17" \text{ H}_{2}^{-}\text{O}$
$1.85 = -4" H_{2}^{-}O$	$0.45 = -18" \text{ H}_{2}^{2}\text{O}$
1.75 = -5" H ₂ O	$0.35 = -19" \text{ H}_{2}^{-}\text{O}$
$1.65 = -6" H_2^{2}O$	$0.25 = -20$ " H_2^2 O
$1.55 = -7" H_{2}^{-}O$	-
	$2.75 = 5$ " $H_2^{2}O$ $2.65 = 4$ " $H_2^{2}O$ $2.55 = 3$ " $H_2^{2}O$ $2.45 = 2$ " $H_2^{2}O$ $2.35 = 1$ " $H_2^{2}O$ $2.25 = 0$ " $H_2^{2}O$ $2.15 = -1$ " $H_2^{2}O$ $2.05 = -2$ " $H_2^{2}O$ $1.95 = -3$ " $H_2^{2}O$ $1.85 = -4$ " $H_2^{2}O$ $1.75 = -5$ " $H_2^{2}O$ $1.65 = -6$ " $H_2^{2}O$

WARNING! This sensor's maximum limit is 20" H₂O. This limit should not be exceeded. Damage to the sensor will result. BODILY INJURY or DEATH could also result.